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Abstract

Atrial fibrillation (AF) is a growing clinical challenge,
with computational modeling proving valuable for
understanding its mechanisms and guiding personalized
therapies. In this study, we used a virtual cohort of 10 bi-
atrial geometries to investigate how different fibrosis
modeling  strategies affect AF vulnerability. We
introduced a method to generate fibrotic patterns aligned
with myocardial fiber orientation and incorporated TGF-
pl-mediated remodeling into the Koivumdki atrial model
to simulate structural and electrical changes. A total of
200 simulations were performed across multiple pacing
sites and fibrosis conditions. Without fibrosis, AF was
induced in only 22% of simulations, highlighting the role
of fibrotic remodeling. The decoupling with ionic
remodeling (D+IR) model yielded realistic arrhythmia
rates (~46%) without parameter tuning. The anisotropy
with ionic remodeling model (IA+IR) required additional
diffusion adjustments to reach ~26%, while the
decoupling model (D) alone led to unrealistically high
inducibility (~60%). LA pacing, particularly near the
RPVs, was most arrhythmogenic (~67%) compared to RA
sites. These findings highlight the importance of fibrosis
representation and pacing location in AF modeling and
support the D+IR approach as a strong candidate for
personalized simulations.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
arrhythmia, with its prevalence rising by over 30% in the
past two decades and expected to grow further [1].
Computational modeling, particularly through virtual
cohorts and digital twin technologies, offers new
opportunities for improving AF diagnoses, prognoses,
and treatments personalization [2].

Among the key pro-arrhythmic features, atrial fibrosis
plays a central role by altering conduction and promoting
reentrant activity [3]. To accurately reflect the patient-
specific nature of AF, it is essential to integrate realistic
fibrotic remodeling into computational models [4, 5].
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In this study, we use a virtual population of bi-atrial
geometries to explore how different fibrosis modeling
strategies affect AF vulnerability. We propose a novel
technique for generating fibrotic patches aligned with
myocardial fibers orientation and adapt the Koivumaéki
atrial cellular model to simulate TGF-B1-induced
remodeling. By running simulations across different
pacing sites and fibrosis configurations, we quantify how
modeling choices influence AF vulnerability, advancing
the development of more personalized and predictive
cardiac models.

2. Material and Methods

2.1.  Fibrosis Assignment Algorithm

To simulate the spatial distribution of fibrosis in atrial
tissue aligned with the myocardial fibers, we developed a
custom algorithm that iteratively expands fibrotic regions
from a set of initial seed nodes S = {s,, S, ..., S,}. At
each step, the algorithm evaluates the fiber direction F; at
a given node v; and introduces a probabilistic rule for
fibrosis propagation based on the angle between local
fiber direction and neighboring node v; € N(v;) vectors.

Additionally, two parameters are considered: a global
grade of directionality (grDir) and a global grade of
aleatoriety (grdle). The former regulates how strongly the
local fiber orientation influences fibrosis propagation,
while the latter introduces stochastic variability into the
spread.

The process continues until the total amount of fibrosis
reaches a predefined threshold percLim, calculated as:
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where f(v;) =1 if the node is fibrotic, and f(v;) =0
otherwise. A schematic overview of this procedure is
shown in Figure 1.

2.2. Computational Domains
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N = 10 bi-atrial geometries were extracted from a
larger dataset constructed wusing Statistical Shape
Modeling (SSM) techniques [6]. Each was remeshed into
a fine tetrahedral mesh with an average spatial resolution
of 0.5mm, yielding 644,240+75,155 vertices and
3,642,000 + 425,150 elements per geometry. To preserve
anatomical accuracy, original tissue classifications and
fiber orientations from the SSM dataset were retained in
all remeshed models (Figure 2A).
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2.3.  Fibrotic Substrate Modeling

To model the fibrotic substrate, we implemented three
distinct approaches, referred to as: decoupling (D),
decoupling with ionic remodeling (D+IR), and increased
anisotropy with ionic remodeling (IA+IR).

In the D model, fibrotic nodes were modeled as
electrically non-conductive tissue by assigning null
diffusion (D = 0S/m), effectively simulating complete
myocyte decoupling.

The D+IR model, as proposed by [5], included both
structural decoupling (achieved by randomly decoupling
30% of the fibrotic nodes) and ionic remodeling induced
by transforming growth factor f1 (TGF-Bl), reflecting
inflammation-driven electrophysiological changes [7].
The specific ionic modifications are summarized in Table
1, with the corresponding transmembrane voltage (TV)
trace shown in Figure 2B. These changes led to a 23.98%

increase in APD, a 38.06% reduction in upstroke velocity,
and a 2.56% shift in resting membrane potential,
evaluated in a 2D simulation (0.3 x 2 x 0.025 cm, 2106
nodes), compared with the persistent AF (PsAF) cellular
model.

The IA+IR model, based on [4], incorporated TGF-B1-
mediated ionic remodeling together with increased
anisotropy, implemented as a 2:1 ratio of longitudinal to
transverse conduction velocities. Baseline conduction
properties used across all models, including the initial
anisotropy ratio, were defined according to [11].
Additionally, a complementary analysis was performed
for this model to assess the impact of reduced overall
conductivity in fibrotic regions, where diffusion values
were scaled to 50%, 25%, and 10% of those in non-
fibrotic tissue.

Fibrosis extent was identical for each anatomical
model and was defined according to the Utah Stage 4
classification, resulting in fibrotic node percentages of
359+0.8% in the LA and 15.8+0.5% in the RA,
consistent with reported ranges in the literature (>30% in
LA, 5-20% in RA) [8] (Figure 2C).

Table 1. Multiplying factors to maximum ionic
conductance.
Healthy  PsAF  TGF-B1
gKi 1.00 2.00 1.40
gKs 1.00 1.00 2.00
gcaL 1.00 0.40 0.18
SKur 1.00 0.80 0.80
Zo 1.00 0.56 0.56
gNa 1.00 1.00 0.60

2.4. Simulations Framework

Atrial biophysical simulations were conducted using
the Koivumiki et al. cellular model [9], implemented
within the monodomain model. Simulations used a GPU-
accelerated finite element solver [10] with a fixed time
step of 20 us. Nodes were classified as fibrotic or non-
fibrotic. Non-fibrotic nodes were assigned a 100%
electrical remodeling profile, representative of PsAF with
shortened action potential (APDoo(2 Hz) = 103 ms)
respect to the healthy model (APDoo(2 Hz) = 240 ms)
[11]. The resulting TV traces are shown in Figure 2B.

AF inducibility was tested using a pacing protocol at
five stimulus location (three in the LA, two in the RA),
located near fibrotic regions (Figure 2D) [12]. Pacing
followed a progressively shortening cycle length (from
400 ms down to 140 ms). AF was considered induced if
electrical activity persisted for at least five seconds
following the final pacing stimulus. In total, 200
simulations were performed across 10 patient geometries,
4 models (no fibrosis, D, D+IR, TA+IR), and 5
stimulation sites.
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3. Results

3.1.  Fibrotic Substrate Modeling

Figure 3A shows voltage maps comparing the IA+IR
fibrotic model under two different diffusion settings:
healthy diffusion (100%) and reduced diffusion (25%)
within fibrotic regions. Whereas considering original
diffusion (100%) the wave propagation is not affected by
the fibrosis presence, lower diffusion values (25%)
exhibits conduction discontinuities and wave-breaks,
which are known precursors to reentrant activity and AF
initiation. Conduction velocity maps (Figure 3B)
highlight that the 25% diffusion case yields longitudinal
CV values in agreement with previous experimental data
(20 cm/s) [4], supporting the physiological relevance of
this parameter choice. Additional simulations in two
representative geometries (Figure 3C—D) demonstrate that
in the absence of diffusion downscaling, no arrhythmic
activity could be initiated.
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Figure 2. (A) Representative atrial geometry with tissue
types. (B) Transmembrane voltage traces for healthy
(blue), PsAF (grey), and fibrotic (orange) tissue
conditions. (C) Bi-atrial geometries employed with their
fibrosis distribution. (D) Atrial anatomy with non-fibrotic
(grey) and fibrotic (black) regions, and the five
stimulation sites.

3.2.  Arrhythmic Vulnerability

The results of our arrhythmic vulnerability analysis,
through the whole database, are summarized in Figure 4.

Panel (A) displays the percentage of arrhythmic cases
based on the model of fibrosis used. When fibrosis is not
integrated, 22+32 % of arrhythmic cases are observed.
The decoupling model shows the highest vulnerability,
with 60+30% of cases, followed by the D+IR model,
which reaches 46+33% and the IA+IR model with 26 +
25%.

Panel (B) presents the percentage of arrhythmic cases
according to the stimulus location. LA sites were
generally more arrhythmogenic, with the region between
the right pulmonary veins (RPVs) showing the highest
vulnerability at 67% on average. Overall, LA stimulation
led to arrhythmia in 48% of cases, compared to 24% for
RA sites.

Finally, across all locations and models, arrhythmias
were induced in 37.7+22.2% of cases, highlighting
notable variability across models and patients.
Nonetheless, the D and D+IR models consistently showed
higher arrhythmic vulnerability.
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Figure 3. (A) Transmembrane voltage (TV) maps and (B)
conduction velocity (CV) maps comparing the IA+IR
model with 100% diffusion (left) versus 25% diffusion
(right). Arrhythmic versus non-arrhythmic outcomes for
two different virtual patient shown in (C) and (D) under
different stimulus location using the IA+IR model with
varying diffusion levels in fibrotic areas.

4. Discussion and Conclusions

In this study, we developed a fast and biologically
informed algorithm to generate fibrotic patterns aligned
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with myocardial fiber directions. Combined with the
integration of TGF-B1 effects into the Koivuméki model,
this allowed us to simulate both structural and
electrophysiological remodeling with realistic biomarker
output [4]. We conducted 200 simulations across four
fibrosis definitions (no fibrosis, D, D+IR, IA+IR) to
assess their impact on arrhythmia vulnerability. Without
fibrosis, only 22% of cases resulted in arrhythmia,
highlighting the essential role of fibrotic remodeling. This
level of inducibility is expected, as the baseline model
includes a PsAF degree of electrical remodeling.

The D model showed the highest inducibility (~60%)
but likely overestimates arrhythmic risk due to excessive
node disconnection. The IA+IR model required diffusion
tuning to sustain reentry, highlighting sensitivity to
solver, mesh, or cell model. This limits reproducibility
across frameworks. In contrast, the D+IR model [5]
yielded realistic arrhythmia rates without parameter
tuning, offering more physiologically consistent results.

We also found that left atrial pacing was significantly
more arrhythmogenic than right atrial, especially near the
right pulmonary veins (67% inducibility), in accordance
with the higher fibrosis infiltration in LA respect to RA.

We plan to expand this study with a larger virtual
cohort, more Utah fibrosis stages, and additional pacing
sites. Future work will also explore how variations in
fibrosis parameters (grDir, grAle) affect pattern
formation, potentially capturing greater patient-specific
heterogeneity. This will strengthen the robustness and
personalization of arrhythmia risk assessment.
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Figure 4. (A) Percentage of arrhythmic cases depending
on the type of model used. (B) Mean percentage of
arrhythmic cases depending on the stimulus location.

Acknowledgments

This work was funded by Generalitat Valenciana Grant
AICO/2021/318 (Consolidables 2021), Grants PID2020-

114291RB-100, PID2023-1487020B-I00 and EraNet
PCI2024-153442 funded by MCIN/
10.13039/501100011033 and by “ERDF A way of
making Europe”.

References

[1] G. Lippi et al., “Global epidemiology of atrial fibrillation: an
in-creasing epidemic and public health challenge,”
International Journal of Stroke, vol. 16, no. 2, pp. 217-221,
2021.

[2] S. A. Niederer et al., “Creation and application of virtual
patient cohorts of heart models,” Philosophical
Transactions of the Royal Society A, vol. 378, no. 2173,
2020.

[3] B. Burstein et al., “Atrial fibrosis: mechanisms and clinical
relevance in atrial fibrillation,” Journal of the American
College of Cardiology, no. 51, vol. 8, pp. 802-809, 2008.

[4] J. B. Hakim et al., “Arrhythmia dynamics in computational
models of the atria following virtual ablation of re-entrant
drivers,” EP Europace, vol. 20, no. suppl 3, pp. iii45-iii54,
2018.

[5] P. Martinez Diaz et al., “The right atrium affects in silico
arrhythmia wvulnerability in both atria,” Heart Rhythm,
vol. 21, no. 6, pp. 799-805, 2024.

[6] C. Nagel et al., “A bi-atrial statistical shape model and 100
volumetric anatomical models of the atria [Data set],”
Zenodo. https://doi.org/10.5281/zenodo0.5004620, 2021.

[7] C. H. Roney et al., “Modelling methodology of atrial fibrosis
affects rotor dynamics and electrograms. EP Europace,
vol. 18, no. suppl 4, pp. iv146-iv155, 2016.

[8] N. Akoum et al., “Atrial fibrosis quantified using late
gadolinium enhancement MRI is associated with sinus node
dysfunction requiring pacemaker implant,” Journal of
Cardiovascular Electrophysiology, vol. 23, no. 1, pp. 44-
50, 2012.

[9] J. T. Koivumdki et al., “In silico screening of the key cel-
lular remodeling targets in chronic atrial fibrillation, ” PLoS
Computational Biology, vol. 10, no. 5, 2014.

[10] V. Garcia-Molla et al., “Adaptive step ODE algorithms for
the 3D simulation of electric heart activity with graphics
processing units,” Computers in Biology and Medicine, vol.
44, pp. 15-26, 2014.

[11] G. S. Romitti et al.,, “Implementation of a cellular
automaton  for  efficient simulations of  atrial
arrhythmias,” Medical Image Analysis, pp. 103484, 2025.

[12] P. M. Boyle et al., “Characterizing the arrhythmogenic
substrate in personalized models of atrial fibrillation:
sensitivity to mesh resolution and pacing protocol in AF
models,” EP Europace, vol.23, no. suppl 1, pp. i3-ill,
2021.

Address for correspondence:

Miguel Rodrigo Bort
Av. de I’Universitat, s/n. 46100, Burjassot (Valencia, Spain).
miguel.rodrigo@uv.es

Page 4


https://doi.org/10.5281/zenodo.5004620

