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Abstract 

Atrial fibrillation (AF) is a growing clinical challenge, 
with computational modeling proving valuable for 
understanding its mechanisms and guiding personalized 
therapies. In this study, we used a virtual cohort of 10 bi-
atrial geometries to investigate how different fibrosis 
modeling strategies affect AF vulnerability. We 
introduced a method to generate fibrotic patterns aligned 
with myocardial fiber orientation and incorporated TGF-
β1-mediated remodeling into the Koivumäki atrial model 
to simulate structural and electrical changes. A total of 
200 simulations were performed across multiple pacing 
sites and fibrosis conditions. Without fibrosis, AF was 
induced in only 22% of simulations, highlighting the role 
of fibrotic remodeling. The decoupling with ionic 
remodeling (D+IR) model yielded realistic arrhythmia 
rates (~46%) without parameter tuning. The anisotropy 
with ionic remodeling model (IA+IR) required additional 
diffusion adjustments to reach ~26%, while the 
decoupling model (D) alone led to unrealistically high 
inducibility (~60%). LA pacing, particularly near the 
RPVs, was most arrhythmogenic (~67%) compared to RA 
sites. These findings highlight the importance of fibrosis 
representation and pacing location in AF modeling and 
support the D+IR approach as a strong candidate for 
personalized simulations. 

 
1. Introduction 

Atrial fibrillation (AF) is the most common sustained 
arrhythmia, with its prevalence rising by over 30% in the 
past two decades and expected to grow further [1]. 
Computational modeling, particularly through virtual 
cohorts and digital twin technologies, offers new 
opportunities for improving AF diagnoses, prognoses, 
and treatments personalization [2].  

Among the key pro-arrhythmic features, atrial fibrosis 
plays a central role by altering conduction and promoting 
reentrant activity [3]. To accurately reflect the patient-
specific nature of AF, it is essential to integrate realistic 
fibrotic remodeling into computational models [4, 5]. 

 In this study, we use a virtual population of bi-atrial 
geometries to explore how different fibrosis modeling 
strategies affect AF vulnerability. We propose a novel 
technique for generating fibrotic patches aligned with 
myocardial fibers orientation and adapt the Koivumäki 
atrial cellular model to simulate TGF-β1-induced 
remodeling. By running simulations across different 
pacing sites and fibrosis configurations, we quantify how 
modeling choices influence AF vulnerability, advancing 
the development of more personalized and predictive 
cardiac models. 
 
2. Material and Methods 

2.1. Fibrosis Assignment Algorithm 

To simulate the spatial distribution of fibrosis in atrial 
tissue aligned with the myocardial fibers, we developed a 
custom algorithm that iteratively expands fibrotic regions 
from a set of initial seed nodes 𝑆 = {𝒔!, 𝒔", … , 𝒔#}. At 
each step, the algorithm evaluates the fiber direction 𝑭$ at 
a given node 𝒗$ and introduces a probabilistic rule for 
fibrosis propagation based on the angle between local 
fiber direction and neighboring node 𝒗% ∈ 𝑁(𝒗$) vectors. 

Additionally, two parameters are considered: a global 
grade of directionality (grDir) and a global grade of 
aleatoriety (grAle). The former regulates how strongly the 
local fiber orientation influences fibrosis propagation, 
while the latter introduces stochastic variability into the 
spread.  

The process continues until the total amount of fibrosis 
reaches a predefined threshold 𝑝𝑒𝑟𝑐𝐿𝑖𝑚, calculated as: 

 

𝑃 =	
∑𝑓(𝒗$)
𝑁#&'()

 

 
where 𝑓(𝒗$) = 1 if the node is fibrotic, and 𝑓(𝒗$) = 0 
otherwise. A schematic overview of this procedure is 
shown in Figure 1. 

 
2.2. Computational Domains 
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N = 10 bi-atrial geometries were extracted from a 
larger dataset constructed using Statistical Shape 
Modeling (SSM) techniques [6]. Each was remeshed into 
a fine tetrahedral mesh with an average spatial resolution 
of 0.5 mm, yielding 644,240 ± 75,155 vertices and 
3,642,000 ± 425,150 elements per geometry. To preserve 
anatomical accuracy, original tissue classifications and 
fiber orientations from the SSM dataset were retained in 
all remeshed models (Figure 2A). 

 

 
Figure 1. Flowchart describing fibrosis distribution 
algorithm. 

 
2.3. Fibrotic Substrate Modeling 

To model the fibrotic substrate, we implemented three 
distinct approaches, referred to as: decoupling (D), 
decoupling with ionic remodeling (D+IR), and increased 
anisotropy with ionic remodeling (IA+IR). 

In the D model, fibrotic nodes were modeled as 
electrically non-conductive tissue by assigning null 
diffusion (D = 0 S/m), effectively simulating complete 
myocyte decoupling. 

The D+IR model, as proposed by [5], included both 
structural decoupling (achieved by randomly decoupling 
30% of the fibrotic nodes) and ionic remodeling induced 
by transforming growth factor β1 (TGF-β1), reflecting 
inflammation-driven electrophysiological changes [7]. 
The specific ionic modifications are summarized in Table 
1, with the corresponding transmembrane voltage (TV) 
trace shown in Figure 2B. These changes led to a 23.98% 

increase in APD, a 38.06% reduction in upstroke velocity, 
and a 2.56% shift in resting membrane potential, 
evaluated in a 2D simulation (0.3 x 2 x 0.025 cm, 2106 
nodes), compared with the persistent AF (PsAF) cellular 
model. 

The IA+IR model, based on [4], incorporated TGF-β1–
mediated ionic remodeling together with increased 
anisotropy, implemented as a 2:1 ratio of longitudinal to 
transverse conduction velocities. Baseline conduction 
properties used across all models, including the initial 
anisotropy ratio, were defined according to [11]. 
Additionally, a complementary analysis was performed 
for this model to assess the impact of reduced overall 
conductivity in fibrotic regions, where diffusion values 
were scaled to 50%, 25%, and 10% of those in non-
fibrotic tissue. 

Fibrosis extent was identical for each anatomical 
model and was defined according to the Utah Stage 4 
classification, resulting in fibrotic node percentages of 
35.9 ± 0.8% in the LA and 15.8 ± 0.5% in the RA, 
consistent with reported ranges in the literature (>30% in 
LA, 5–20% in RA) [8] (Figure 2C). 

 
Table 1. Multiplying factors to maximum ionic 
conductance. 

 Healthy PsAF TGF-β1 
gK1 1.00 2.00 1.40 
gKs 1.00 1.00 2.00 
gCaL 1.00 0.40 0.18 
gKur 1.00 0.80 0.80 
gto 1.00 0.56 0.56 
gNa 1.00 1.00 0.60 

 
2.4. Simulations Framework 

Atrial biophysical simulations were conducted using 
the Koivumäki et al. cellular model [9], implemented 
within the monodomain model. Simulations used a GPU-
accelerated finite element solver [10] with a fixed time 
step of 20 μs. Nodes were classified as fibrotic or non-
fibrotic. Non-fibrotic nodes were assigned a 100% 
electrical remodeling profile, representative of PsAF with 
shortened action potential (APD90(2 Hz) = 103 ms) 
respect to the healthy model (APD90(2 Hz) = 240 ms) 
[11]. The resulting TV traces are shown in Figure 2B. 

AF inducibility was tested using a pacing protocol at 
five stimulus location (three in the LA, two in the RA), 
located near fibrotic regions (Figure 2D) [12]. Pacing 
followed a progressively shortening cycle length (from 
400 ms down to 140 ms). AF was considered induced if 
electrical activity persisted for at least five seconds 
following the final pacing stimulus. In total, 200 
simulations were performed across 10 patient geometries, 
4 models (no fibrosis, D, D+IR, IA+IR), and 5 
stimulation sites. 
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3. Results 

3.1.  Fibrotic Substrate Modeling 

Figure 3A shows voltage maps comparing the IA+IR 
fibrotic model under two different diffusion settings: 
healthy diffusion (100%) and reduced diffusion (25%) 
within fibrotic regions. Whereas considering original 
diffusion (100%) the wave propagation is not affected by 
the fibrosis presence, lower diffusion values (25%) 
exhibits conduction discontinuities and wave-breaks, 
which are known precursors to reentrant activity and AF 
initiation. Conduction velocity maps (Figure 3B) 
highlight that the 25% diffusion case yields longitudinal 
CV values in agreement with previous experimental data 
(20 cm/s) [4], supporting the physiological relevance of 
this parameter choice. Additional simulations in two 
representative geometries (Figure 3C–D) demonstrate that 
in the absence of diffusion downscaling, no arrhythmic 
activity could be initiated. 

 

 
Figure 2. (A) Representative atrial geometry with tissue 
types. (B) Transmembrane voltage traces for healthy 
(blue), PsAF (grey), and fibrotic (orange) tissue 
conditions. (C) Bi-atrial geometries employed with their 
fibrosis distribution. (D) Atrial anatomy with non-fibrotic 
(grey) and fibrotic (black) regions, and the five 
stimulation sites.  
 
3.2.  Arrhythmic Vulnerability 

The results of our arrhythmic vulnerability analysis, 
through the whole database, are summarized in Figure 4. 

Panel (A) displays the percentage of arrhythmic cases 
based on the model of fibrosis used. When fibrosis is not 
integrated, 22±32 % of arrhythmic cases are observed. 
The decoupling model shows the highest vulnerability, 
with 60±30% of cases, followed by the D+IR model, 
which reaches 46±33% and the IA+IR model with 26 ± 
25%. 

Panel (B) presents the percentage of arrhythmic cases 
according to the stimulus location. LA sites were 
generally more arrhythmogenic, with the region between 
the right pulmonary veins (RPVs) showing the highest 
vulnerability at 67% on average. Overall, LA stimulation 
led to arrhythmia in 48% of cases, compared to 24% for 
RA sites. 

Finally, across all locations and models, arrhythmias 
were induced in 37.7 ± 22.2% of cases, highlighting 
notable variability across models and patients. 
Nonetheless, the D and D+IR models consistently showed 
higher arrhythmic vulnerability. 

 

Figure 3. (A) Transmembrane voltage (TV) maps and (B) 
conduction velocity (CV) maps comparing the IA+IR 
model with 100% diffusion (left) versus 25% diffusion 
(right). Arrhythmic versus non-arrhythmic outcomes for 
two different virtual patient shown in (C) and (D) under 
different stimulus location using the IA+IR model with 
varying diffusion levels in fibrotic areas.  

 
4. Discussion and Conclusions 

In this study, we developed a fast and biologically 
informed algorithm to generate fibrotic patterns aligned 
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with myocardial fiber directions. Combined with the 
integration of TGF-β1 effects into the Koivumäki model, 
this allowed us to simulate both structural and 
electrophysiological remodeling with realistic biomarker 
output [4]. We conducted 200 simulations across four 
fibrosis definitions (no fibrosis, D, D+IR, IA+IR) to 
assess their impact on arrhythmia vulnerability. Without 
fibrosis, only 22% of cases resulted in arrhythmia, 
highlighting the essential role of fibrotic remodeling. This 
level of inducibility is expected, as the baseline model 
includes a PsAF degree of electrical remodeling. 

The D model showed the highest inducibility (~60%) 
but likely overestimates arrhythmic risk due to excessive 
node disconnection. The IA+IR model required diffusion 
tuning to sustain reentry, highlighting sensitivity to 
solver, mesh, or cell model. This limits reproducibility 
across frameworks. In contrast, the D+IR model [5] 
yielded realistic arrhythmia rates without parameter 
tuning, offering more physiologically consistent results. 

We also found that left atrial pacing was significantly 
more arrhythmogenic than right atrial, especially near the 
right pulmonary veins (67% inducibility), in accordance 
with the higher fibrosis infiltration in LA respect to RA.   

We plan to expand this study with a larger virtual 
cohort, more Utah fibrosis stages, and additional pacing 
sites. Future work will also explore how variations in 
fibrosis parameters (grDir, grAle) affect pattern 
formation, potentially capturing greater patient-specific 
heterogeneity. This will strengthen the robustness and 
personalization of arrhythmia risk assessment. 

 

 
Figure 4. (A) Percentage of arrhythmic cases depending 
on the type of model used. (B) Mean percentage of 
arrhythmic cases depending on the stimulus location. 
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